三阶矩阵求逆公式和口诀
三阶矩阵求逆最快方法?
三阶矩阵求逆最快方法?
公式如下:
求元索为具体数字的矩阵的逆矩阵,常用初等变换法‘如果A可逆,则A可通过初等变换,化为单位矩阵 I ,即存在初等矩阵使
可以看到当A通过初等变换化为单位处阵的同时,对单位矩阵I作同样的初等变换,就化为A的逆矩阵
这就是求逆矩阵的初等行变换法,是实际应用中比较简单的一种方法。需要注意的是,在作初等变换时只允许作行初等变换。同样,只用列初等变换也可以求逆矩阵。
扩展资料:
1、利用定义求逆矩阵:
设A、B都是n阶方阵,如果存在n阶方阵B使得ABBAE,则称A为可逆矩阵,而称B为A的逆矩阵。下面举例说明这种方法的应用。
2、恒等变形法:
恒等变形法求逆矩阵的理论依据为逆矩阵的定义,此方法也常用与矩阵的理论推导上,就是通过恒等变形把要求的值化简出来,题目中的逆矩阵可以不求,利用
把题目中的逆矩阵化简掉。
三阶行列式求逆公式?
求三阶行列式的逆矩阵的方法:
假设三阶矩阵A,用A的伴随矩阵除以A的行列式,得到的结果就是A的逆矩阵。 扩展资料
关于逆矩阵的性质:
1、矩阵A可逆的充要条件是A的`行列式不等于0。
2、可逆矩阵一定是方阵。
3、如果矩阵A是可逆的,A的逆矩阵是唯一的。
4、可逆矩阵也被称为非奇异矩阵
三阶可逆矩阵求法?
求三阶行列式的逆矩阵的方法:
假设三阶矩阵A,用A的伴随矩阵除以A的行列式,得到的结果就是A的逆矩阵。 扩展资料
关于逆矩阵的性质:
1、矩阵A可逆的充要条件是A的`行列式不等于0。
2、可逆矩阵一定是方阵。
3、如果矩阵A是可逆的,A的逆矩阵是唯一的。
4、可逆矩阵也被称为非奇异矩阵、满秩矩阵。
逆矩阵的计算顺序?
1、行交换(列交换)的初等矩阵,逆矩阵还是本身;
2、某一行(或列)乘以一个倍数的初等矩阵,逆矩阵,是这一行(或列)除以这个倍数的初等矩阵;
3、某一行(或列)乘以一个倍数,加到另一行(或列)的初等矩阵,逆矩阵,是这一行(或列)乘以这个倍数的相反数,加到另外那一行(或列)的初等矩阵。
初等矩阵的逆矩阵其实是一个同类型的初等矩阵(可看作逆变换)。例如,交换矩阵中某两行(列)的位置;用一个非零常数k乘以矩阵的某一行(列);将矩阵的某一行(列)乘以常数k后加到另一行(列)上去。
扩展资料:
初等行变换不影响线性方程组的解,也可用于高斯消元法,用于逐渐将系数矩阵化为标准形。初等行变换不改变矩阵的核(故不改变解集),但改变了矩阵的像。反过来,初等列变换没有改变像却改变了核。
有的时候,当矩阵的阶数比较高的时候,使用其行列式的值和伴随矩阵求解其逆矩阵会产生较大的计算量。这时,通常使用将原矩阵和相同行数(也等于列数)的单位矩阵并排,再使用初等变换的方法将这个并排矩阵的左边化为单位矩阵,这时,右边的矩阵即为原矩阵的逆矩阵。