mathematica变量命名规则 工程数学和高等数学有什么区别?

[更新]
·
·
分类:行业
3762 阅读

mathematica变量命名规则

工程数学和高等数学有什么区别?

工程数学和高等数学有什么区别?

一、学习目的不同
1、工程数学:工程数学是为了让工科学生用更加方便的理论工具来处理工程常见问题。
2、高等数学:高等数学是由微积分学,较深入的代数学、几何学以及它们之间的交叉内容所形成的一门基础学科。
二、课程内容不同
1、工程数学:复数的性质,复变量函数,解析函数,复变函数的积分,复数域上的幂级数,解析函数的Taylor级数,Lorent级数,奇点,留数及其计算;弦振动方程,热传导方程和位势方程,二阶线性方程的分类,解弦振动方程的行波法,二维和三维波动方程,分离变量解法。
Bessel函数、Legendre多项式及其性质,函数按特征函数的展开,Fourier变换,Laplace变换,广义函数及其Fourier变换,Green函数法,变分问题,Sobolev空间与弱解,边值问题的有限元解法,总刚度矩阵和总荷载矩阵,用Mathematica编有限元解法的程序。
2、高等数学:数列、极限、微积分、空间解析几何与线性代数、级数、常微分方程。

求个变量的最大值?

字母看的有点不顺眼,先令 ,
则 , ,求 的最大值可以应用拉格朗日乘数法:
设拉格朗日函数为:
解这个方程组:
我用Mathematica解出的结果,其中 是郎伯W函数
当 时, ;
当 时,

tanx的三角函数定义?

三角函数是基本初等函数之一。
是以角度(数学上最常用弧度制,下同)为自变量,角度对应任意角终边与单位圆交点坐标或其比值为因变量的函数。也可以等价地用与单位圆有关的各种线段的长度来定义。
三角函数在研究三角形和圆等几何形状的性质时有重要作用,也是研究周期性现象的基础数学工具。在数学分析中,三角函数也被定义为无穷级数或特定微分方程的解,允许它们的取值扩展到任意实数值,甚至是复数值。
常见的三角函数包括正弦函数、余弦函数和正切函数。在航海学、测绘学、工程学等其他学科中,还会用到如余切函数、正割函数、余割函数、正矢函数、余矢函数、半正矢函数、半余矢函数等其他的三角函数。不同的三角函数之间的关系可以通过几何直观或者计算得出,称为三角恒等式。
三角函数一般用于计算三角形中未知长度的边和未知的角度,在导航、工程学以及物理学方面都有广泛的用途。另外,以三角函数为模版,可以定义一类相似的函数,叫做双曲函数。常见的双曲函数也被称为双曲正弦函数、双曲余弦函数等等。
扩展资料:
三角函数的起源:
早期对于三角函数的研究可以追溯到古代。古希腊三角术的奠基人是公元前2世纪的喜帕恰斯。他按照古巴比伦人的做法,将圆周分为360等份(即圆周的弧度为360度,与现代的弧度制不同)。对于给定的弧度,他给出了对应的弦的长度数值,这个记法和现代的正弦函数是等价的。
喜帕恰斯实际上给出了最早的三角函数数值表。然而古希腊的三角学基本是球面三角学。这与古希腊人研究的主体是天文学有关。梅涅劳斯在他的著作《球面学》中使用了正弦来描述球面的梅涅劳斯定理。
古希腊三角学与其天文学的应用在埃及的托勒密时代达到了高峰,托勒密在《数学汇编》(Syntaxis Mathematica)中计算了36度角和72度角的正弦值,还给出了计算和角公式和半角公式的方法。托勒密还给出了所有0到180度的所有整数和半整数弧度对应的正弦值。