怎么理解傅里叶变换及收敛域 傅里叶变换存在条件?

[更新]
·
·
分类:行业
3696 阅读

怎么理解傅里叶变换及收敛域

傅里叶变换存在条件?

傅里叶变换存在条件?

傅里叶变换的条件:在一个以2T为周期内f(X)连续或只有有限个第一类间断点,附f(x)单调或可划分成有限个单调区间,则F(x)以2T为周期的傅里叶级数收敛,和函数S(x)也是以2T为周期的周期函数,且在这些间断点上,函数是有限值;在一个周期内具有有限个极值点;绝对可积。

傅立叶级数为什么不选某个点?

实际上,只要 f(x) 可积,就可写出傅立叶系数,因而可写出傅立叶级数,但该傅立叶级数未必收敛于 f(x),而是在 x 处收敛于
[f(x-0) f(x 0)]/2,
也就是说,当 x 是连续点时该傅立叶级数才收敛于 f(x)。

s域怎么看傅里叶变换是否存在?

当H(s)的极点全部在左平面时有H(jw)H(s),其中sjw。也就是说当s域的收敛域在JW的左边时,就可以实现S域变为频域,因为S域的收敛域包含JW,你画一个坐标轴,以Jw为纵轴,σ为横轴就能明白了。

傅里叶变换的函数条件?

傅里叶变换的条件:在一个以2T为周期内f(X)连续或只有有限个第一类间断点,附f(x)单调或可划分成有限个单调区间,则F(x)以2T为周期的傅里叶级数收敛,和函数S(x)也是以2T为周期的周期函数,且在这些间断点上,函数是有限值;在一个周期内具有有限个极值点;绝对可积。

希尔伯特双态空间是什么?

是欧几里德空间的一个推广,其不再局限于有限维的情形。
与欧几里德空间相仿,希尔伯特空间也是一个内积空间,其上有距离和角的概念(及由此引申而来的正交性与垂直性的概念)。此外,希尔伯特空间还是一个完备的空间,其上所有的柯西序列等价于收敛序列,从而微积分中的大部分概念都可以无障碍地推广到希尔伯特空间中。
希尔伯特空间为基于任意正交系上的多项式表示的傅立叶级数和傅立叶变换提供了一种有效的表述方式,而这也是泛函分析的核心概念之一。
希尔伯特空间是公式化数学和量子力学的关键性概念之一。

信号有傅里叶变换为什么还要其他变换?

首先,为什么要进行变换?因为很多时候,频率域比时域直观得多。
傅里叶级数和傅里叶变换,表明时域的信号可以分解为不同频率的正弦波的叠加。而如果我们把两个没有公共频率成分的信号相加,一同发送。在接收端接收到之后,用滤波器把两个信号分开,就可以还原出发送的两个信号。这就是通信过程的实质。
而在这个过程中,发送端发送出去的信号的最大频率和最小频率是否在接收端的带通滤波器的上下边界频率之内?如果超出了滤波器的频率范围,接收端接收到的信号就会丢失一部分信息,接收端接收到的消息就会有错误。
但这个问题从时域是很难看出来的,不过,从频率域就一目了然。
因此傅里叶变换得到了广泛应用,它的地位也非常重要。然而,可以进行傅里叶变换的信号似乎不那么够用,傅里叶变换的收敛有一个狄利克雷条件,要求信号绝对可积/绝对可和。为了使不满足这一条件的信号,也能读出它的“频率”,拉普拉斯变换和Z变换,对“频率”的含义做出了扩充,使得大多数有用信号都具有了对应的“频率”域表达式,方便了对各个器件的设计。