等价向量组判断条件 线性代数中两个向量组等价是什么意思?

[更新]
·
·
分类:行业
2215 阅读

等价向量组判断条件

线性代数中两个向量组等价是什么意思?

线性代数中两个向量组等价是什么意思?

两个向量组可以互相线性表出,即是第一个向量组中的每个向量都能表示成第二个向量组的向量的线性组合,且第二个向量组中的每个向量都能表示成第一二个向量组的向量的线性组合。
向量组等价的基本判定是:两个向量组可以互相线性表示。
需要重点强调的是:等价的向量组的秩相等,但是秩相等的向量组不一定等价。
向量组A:a1,a2,…am与向量组B:b1,b2,…bn的等价秩相等条件是
R(A)R(B)R(A,B),
其中A和B是向量组A和B所构成的矩阵
扩展资料:
向量组A:a1,a2,…am与向量组B:b1,b2,…bn的等价秩相等条件是
R(A)R(B)R(A,B),
其中A和B是向量组A和B所构成的矩阵。
(注意区分粗体字与普通字母所表示的不同意义)
或者说:两个向量组可以互相线性表示,则称这两个向量组等价。
注:
1、等价向量组具有传递性、对称性及反身性。但向量个数可以不一样,线性相关性也可以不一样。
2、任一向量组和它的极大无关组等价。
3、向量组的任意两个极大无关组等价。
4、两个等价的线性无关的向量组所含向量的个数相同。
5、等价的向量组具有相同的秩,但秩相同的向量组不一定等价。
两个向量组可以互相线性表出, 即是第一个向量组中的每个向量都能表示成第二个向量组的向量的线性组合,且第二个向量组中的每个向量都能表示成第一二个向量组的向量的线性组合。

如何证明向量组等价的对称性?

向量组等价的定义是两个向量组可以互相线性表示 向量组(2)可由向量组(1)线性表示 但向量组(1)不能由向量组(2)线性表示 所以两个向量组并不等价.

向量等价的条件是什么?

向量组等价充要条件:两个向量组可以互相线性表示。
向量组A:a1,a2,…am与向量组B:b1,b2,…bn的等价秩相等条件是R(A)R(B)R(A,B)。
区别:
(一)含义不同
1、向量组是由若干同维数的列向量(或同维数的行向量)组成的集合。
2、矩阵是一个按照长方阵列排列的复数或实数集合,由向量组构成。