利用直角坐标计算二重积分例题 二重积分r怎么求?

[更新]
·
·
分类:行业
3621 阅读

利用直角坐标计算二重积分例题

二重积分r怎么求?

二重积分r怎么求?

极坐标系里的二重积分r是指极坐标的极径,表示平面坐标点到原点的距离。在极坐标中求二重积分的注意事项:
1、在极坐标系下计算二重积分,需将被积函数f(x,y),积分区域D以及面积元素dσ都用极坐标表示。函数f(x,y)的极坐标形式为f(rcosθ,rsinθ)。
2、为得到极坐标下的面积元素dσ的转换,用坐标曲线网去分割D,即用以ra,即O为圆心r为半径的圆和以θb,O为起点的射线去无穷分割D,设Δσ就是r到r dr和从θ到θ dθ的小区域,其面积为可得到二重积分在极坐标下的表达式:
当被积函数大于零时,二重积分是柱体的体积。当被积函数小于零时,二重积分是柱体体积负值。
二重积分和定积分一样不是函数,而是一个数值。因此若一个连续函数f(x,y)内含有二重积分,对它进行二次积分,这个二重积分的具体数值便可以求解出来。当f(x,y)在区域D上可积时,其积分值与分割方法无关,可选用平行于坐标轴的两组直线来分割D,这时每个小区域的面积ΔσΔx·Δy,因此在直角坐标系下,面积元素dσdxdy。在极坐标系下计算二重积分,需将被积函数f(x,y),积分区域D以及面积元素dσ都用极坐标表示。
函数f(x,y)的极坐标形式为f(rcosθ,rsinθ)。为得到极坐标下的面积元素dσ的转换,用坐标曲线网去分割D,即用以ra,即O为圆心r为半径的圆和以θb,O为起点的射线去无穷分割D,设Δσ就是r到r dr和从θ到θ dθ的小区域。

二重定积分的计算方法?

把二重积分化成二次积分,也就是把其中一个变量当成常量比如Y,然后只对一个变量积分,得到一个只含Y的被积函数,再对Y积分就行了。
计算二重积分的基本思路是简化积分计算思想,即把二重积分尽可能的转化为累次积分。
为此,必须注意:选取适合坐标,是否分域,如何定限。计算二重积分的主要方法有:利用对称性、奇偶性、变量替换、几何意义化简,利用直角坐标或极坐标化为二次积分,利用分域法,交换积分次序等能大大简化二重积分的计算,只要方法选得适当,二重积分的运算量就会小很多。
二重积分的现实(物理)含义:面积×物理量=二重积分值;
举例说明:二重积分的现实(物理)含义:
二重积分计算平面面积,即:面积×1=平面面积;二重积分计算立体体积,即:底面积×高=立体体积;二重积分计算平面薄皮质量,即:面积×面密度=平面薄皮质量。
扩展资料:
二重积分是二元函数在空间上的积分,同定积分类似,是某种特定形式的和的极限。本质是求曲顶柱体体积。重积分有着广泛的应用,可以用来计算曲面的面积,平面薄片重心等。平面区域的二重积分可以推广为在高维空间中的(有向)曲面上进行积分,称为曲面积分。
在空间直角坐标系中,二重积分是各部分区域上柱体体积的代数和,在xoy平面上方的取正,在xoy平面下方的取负。某些特殊的被积函数f(x,y)的所表示的曲面和D底面所为围的曲顶柱体的体积公式已知,可以用二重积分的几何意义的来计算。